Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40.610
1.
Hum Brain Mapp ; 45(7): e26700, 2024 May.
Article En | MEDLINE | ID: mdl-38726799

The post-movement beta rebound has been studied extensively using magnetoencephalography (MEG) and is reliably modulated by various task parameters as well as illness. Our recent study showed that rebounds, which we generalise as "post-task responses" (PTRs), are a ubiquitous phenomenon in the brain, occurring across the cortex in theta, alpha, and beta bands. Currently, it is unknown whether PTRs following working memory are driven by transient bursts, which are moments of short-lived high amplitude activity, similar to those that drive the post-movement beta rebound. Here, we use three-state univariate hidden Markov models (HMMs), which can identify bursts without a priori knowledge of frequency content or response timings, to compare bursts that drive PTRs in working memory and visuomotor MEG datasets. Our results show that PTRs across working memory and visuomotor tasks are driven by pan-spectral transient bursts. These bursts have very similar spectral content variation over the cortex, correlating strongly between the two tasks in the alpha (R2 = .89) and beta (R2 = .53) bands. Bursts also have similar variation in duration over the cortex (e.g., long duration bursts occur in the motor cortex for both tasks), strongly correlating over cortical regions between tasks (R2 = .56), with a mean over all regions of around 300 ms in both datasets. Finally, we demonstrate the ability of HMMs to isolate signals of interest in MEG data, such that the HMM probability timecourse correlates more strongly with reaction times than frequency filtered power envelopes from the same brain regions. Overall, we show that induced PTRs across different tasks are driven by bursts with similar characteristics, which can be identified using HMMs. Given the similarity between bursts across tasks, we suggest that PTRs across the cortex may be driven by a common underlying neural phenomenon.


Magnetoencephalography , Memory, Short-Term , Humans , Memory, Short-Term/physiology , Adult , Male , Female , Young Adult , Markov Chains , Psychomotor Performance/physiology , Cerebral Cortex/physiology , Movement/physiology , Beta Rhythm/physiology
2.
J Neuroeng Rehabil ; 21(1): 78, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745322

BACKGROUND: Mirror therapy (MT) has been shown to be effective for motor recovery of the upper limb after a stroke. The cerebral mechanisms of mirror therapy involve the precuneus, premotor cortex and primary motor cortex. Activation of the precuneus could be a marker of this effectiveness. MT has some limitations and video therapy (VT) tools are being developed to optimise MT. While the clinical superiority of these new tools remains to be demonstrated, comparing the cerebral mechanisms of these different modalities will provide a better understanding of the related neuroplasticity mechanisms. METHODS: Thirty-three right-handed healthy individuals were included in this study. Participants were equipped with a near-infrared spectroscopy headset covering the precuneus, the premotor cortex and the primary motor cortex of each hemisphere. Each participant performed 3 tasks: a MT task (right hand movement and left visual feedback), a VT task (left visual feedback only) and a control task (right hand movement only). Perception of illusion was rated for MT and VT by asking participants to rate the intensity using a visual analogue scale. The aim of this study was to compare brain activation during MT and VT. We also evaluated the correlation between the precuneus activation and the illusion quality of the visual mirrored feedback. RESULTS: We found a greater activation of the precuneus contralateral to the visual feedback during VT than during MT. We also showed that activation of primary motor cortex and premotor cortex contralateral to visual feedback was more extensive in VT than in MT. Illusion perception was not correlated with precuneus activation. CONCLUSION: VT led to greater activation of a parieto-frontal network than MT. This could result from a greater focus on visual feedback and a reduction in interhemispheric inhibition in VT because of the absence of an associated motor task. These results suggest that VT could promote neuroplasticity mechanisms in people with brain lesions more efficiently than MT. CLINICAL TRIAL REGISTRATION: NCT04738851.


Feedback, Sensory , Motor Cortex , Spectroscopy, Near-Infrared , Humans , Male , Female , Spectroscopy, Near-Infrared/methods , Adult , Feedback, Sensory/physiology , Motor Cortex/physiology , Motor Cortex/diagnostic imaging , Young Adult , Brain/physiology , Brain/diagnostic imaging , Parietal Lobe/physiology , Parietal Lobe/diagnostic imaging , Psychomotor Performance/physiology
3.
PLoS One ; 19(5): e0299705, 2024.
Article En | MEDLINE | ID: mdl-38701086

Whenever we are confronted with action opportunities in everyday life, e.g., when passing an opening, we rely on our ability to precisely estimate our own bodily capabilities in relation to the environmental conditions. So-called affordance judgments can be affected after brain damage. Previous studies with healthy adults showed that such judgments appeared to be trainable within one session. In the current study, we examined whether stroke patients with either right brain damage (n = 30) or left brain damage (n = 30) may similarly profit from training in an aperture task. Further, the role of neuropsychological deficits in trainability was investigated. In the administered task, stroke patients decided whether their hand would fit into a presented opening with varying horizontal width (Aperture Task). During one training session, patients were asked to try to fit their hand into the opening and received feedback on their decisions. We analyzed accuracy and the detection theory parameters perceptual sensitivity and judgment tendency. Both patients with right brain damage and patients with left brain damage showed improved performance during training as well as post training. High variability with differential profiles of trainability was revealed in these patients. Patients with impaired performance in a visuo-spatial or motor-cognitive task appeared to profit considerably from the target-driven action phase with feedback, but the performance increase in judgments did not last when the action was withdrawn. Future studies applying lesion analysis with a larger sample may shed further light on the dissociation in the trainability of affordance judgments observed in patients with versus without visuo-spatial or motor-cognitive deficits.


Judgment , Stroke , Humans , Male , Stroke/physiopathology , Stroke/complications , Stroke/psychology , Female , Middle Aged , Aged , Functional Laterality/physiology , Psychomotor Performance/physiology , Adult
4.
Sci Rep ; 14(1): 10421, 2024 05 07.
Article En | MEDLINE | ID: mdl-38710897

Humans move their hands toward precise positions, a skill supported by the coordination of multiple joint movements, even in the presence of inherent redundancy. However, it remains unclear how the central nervous system learns the relationship between redundant joint movements and hand positions when starting from scratch. To address this question, a virtual-arm reaching task was performed in which participants were required to move a cursor corresponding to the hand of a virtual arm to a target. The joint angles of the virtual arm were determined by the heights of the participants' fingers. The results demonstrated that the participants moved the cursor to the target straighter and faster in the late phase than they did in the initial phase of learning. This improvement was accompanied by a reduction in the amount of angular changes in the virtual limb joint, predominantly characterized by an increased reliance on the virtual shoulder joint as opposed to the virtual wrist joint. These findings suggest that the central nervous system selects a combination of multijoint movements that minimize motor effort while learning novel upper-limb kinematics.


Arm , Learning , Movement , Humans , Biomechanical Phenomena , Arm/physiology , Male , Learning/physiology , Female , Movement/physiology , Adult , Young Adult , Psychomotor Performance/physiology , Wrist Joint/physiology
5.
Elife ; 122024 May 13.
Article En | MEDLINE | ID: mdl-38738986

Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal's control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject's control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.


Behavior, Animal , Animals , Humans , Male , Behavior, Animal/physiology , Female , Psychomotor Performance/physiology , Adult , Postural Balance/physiology , Young Adult , Macaca mulatta
6.
Sci Rep ; 14(1): 10011, 2024 05 01.
Article En | MEDLINE | ID: mdl-38693174

Interacting with the environment often requires the integration of visual and haptic information. Notably, perceiving external objects depends on how our brain binds sensory inputs into a unitary experience. The feedback provided by objects when we interact (through our movements) with them might then influence our perception. In VR, the interaction with an object can be dissociated by the size of the object itself by means of 'colliders' (interactive spaces surrounding the objects). The present study investigates possible after-effects in size discrimination for virtual objects after exposure to a prolonged interaction characterized by visual and haptic incongruencies. A total of 96 participants participated in this virtual reality study. Participants were distributed into four groups, in which they were required to perform a size discrimination task between two cubes before and after 15 min of a visuomotor task involving the interaction with the same virtual cubes. Each group interacted with a different cube where the visual (normal vs. small collider) and the virtual cube's haptic (vibration vs. no vibration) features were manipulated. The quality of interaction (number of touches and trials performed) was used as a dependent variable to investigate the performance in the visuomotor task. To measure bias in size perception, we compared changes in point of subjective equality (PSE) before and after the task in the four groups. The results showed that a small visual collider decreased manipulation performance, regardless of the presence or not of the haptic signal. However, change in PSE was found only in the group exposed to the small visual collider with haptic feedback, leading to increased perception of the cube size. This after-effect was absent in the only visual incongruency condition, suggesting that haptic information and multisensory integration played a crucial role in inducing perceptual changes. The results are discussed considering the recent findings in visual-haptic integration during multisensory information processing in real and virtual environments.


Virtual Reality , Visual Perception , Humans , Male , Female , Adult , Visual Perception/physiology , Young Adult , Psychomotor Performance/physiology , Touch Perception/physiology , Size Perception/physiology
7.
Sci Rep ; 14(1): 9996, 2024 05 01.
Article En | MEDLINE | ID: mdl-38693184

Tracking a moving object with the eyes seems like a simple task but involves areas of prefrontal cortex (PFC) associated with attention, working memory and prediction. Increasing the demand on these processes with secondary tasks can affect eye movements and/or perceptual judgments. This is particularly evident in chronic or acute neurological conditions such as Alzheimer's disease or mild traumatic brain injury. Here, we combined near infrared spectroscopy and video-oculography to examine the effects of concurrent upper limb movement, which provides additional afference and efference that facilitates tracking of a moving object, in a novel dual-task pursuit protocol. We confirmed the expected effects on judgement accuracy in the primary and secondary tasks, as well as a reduction in eye velocity when the moving object was occluded. Although there was limited evidence of oculo-manual facilitation on behavioural measures, performing concurrent upper limb movement did result in lower activity in left medial PFC, as well as a change in PFC network organisation, which was shown by Graph analysis to be locally and globally more efficient. These findings extend upon previous work by showing how PFC is functionally organised to support eye-hand coordination when task demands more closely replicate daily activities.


Prefrontal Cortex , Upper Extremity , Humans , Prefrontal Cortex/physiology , Male , Female , Upper Extremity/physiology , Adult , Young Adult , Movement/physiology , Psychomotor Performance/physiology , Eye Movements/physiology , Spectroscopy, Near-Infrared , Attention/physiology
8.
J Neuroeng Rehabil ; 21(1): 70, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702813

Despite its rich history of success in controlling powered prostheses and emerging commercial interests in ubiquitous computing, myoelectric control continues to suffer from a lack of robustness. In particular, EMG-based systems often degrade over prolonged use resulting in tedious recalibration sessions, user frustration, and device abandonment. Unsupervised adaptation is one proposed solution that updates a model's parameters over time based on its own predictions during real-time use to maintain robustness without requiring additional user input or dedicated recalibration. However, these strategies can actually accelerate performance deterioration when they begin to classify (and thus adapt) incorrectly, defeating their own purpose. To overcome these limitations, we propose a novel adaptive learning strategy, Context-Informed Incremental Learning (CIIL), that leverages in situ context to better inform the prediction of pseudo-labels. In this work, we evaluate these CIIL strategies in an online target acquisition task for two use cases: (1) when there is a lack of training data and (2) when a drastic and enduring alteration in the input space has occurred. A total of 32 participants were evaluated across the two experiments. The results show that the CIIL strategies significantly outperform the current state-of-the-art unsupervised high-confidence adaptation and outperform models trained with the conventional screen-guided training approach, even after a 45-degree electrode shift (p < 0.05). Consequently, CIIL has substantial implications for the future of myoelectric control, potentially reducing the training burden while bolstering model robustness, and leading to improved real-time control.


Electromyography , Humans , Male , Adult , Female , Young Adult , Learning/physiology , Artificial Limbs , Machine Learning , Psychomotor Performance/physiology
9.
Sci Rep ; 14(1): 10788, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734783

Prior research has shown that the sensorimotor cortical oscillations are uncharacteristic in persons with cerebral palsy (CP); however, it is unknown if these altered cortical oscillations have an impact on adaptive sensorimotor control. This investigation evaluated the cortical dynamics when the motor action needs to be changed "on-the-fly". Adults with CP and neurotypical controls completed a sensorimotor task that required either proactive or reactive control while undergoing magnetoencephalography (MEG). When compared with the controls, the adults with CP had a weaker beta (18-24 Hz) event-related desynchronization (ERD), post-movement beta rebound (PMBR, 16-20 Hz) and theta (4-6 Hz) event-related synchronization (ERS) in the sensorimotor cortices. In agreement with normative work, the controls exhibited differences in the strength of the sensorimotor gamma (66-84 Hz) ERS during proactive compared to reactive trials, but similar condition-wise changes were not seen in adults with CP. Lastly, the adults with CP who had a stronger theta ERS tended to have better hand dexterity, as indicated by the Box and Blocks Test and Purdue Pegboard Test. These results may suggest that alterations in the theta and gamma cortical oscillations play a role in the altered hand dexterity and uncharacteristic adaptive sensorimotor control noted in adults with CP.


Cerebral Palsy , Magnetoencephalography , Sensorimotor Cortex , Humans , Adult , Male , Female , Cerebral Palsy/physiopathology , Sensorimotor Cortex/physiopathology , Sensorimotor Cortex/physiology , Young Adult , Psychomotor Performance/physiology , Adaptation, Physiological , Case-Control Studies
10.
Cogn Res Princ Implic ; 9(1): 26, 2024 05 01.
Article En | MEDLINE | ID: mdl-38691325

Attention allows us to focus on relevant information while ignoring distractions. Effective suppression of distracting information is crucial for efficient visual search. Recent studies have developed two paradigms to investigate attentional suppression: cued-suppression which is based on top-down control, and learned-suppression which is based on selection history. While both types of suppression reportedly engage proactive control, it remains unclear whether they rely on shared mechanisms. This study aimed to determine the relationship between cued- and learned-suppression. In a within-subjects design, 54 participants performed a cued-suppression task where pre-cues indicated upcoming target or distractor colors, and a learned-suppression task where a salient color distractor was present or absent. No significant correlation emerged between performance in the two tasks, suggesting distinct suppression mechanisms. Cued-suppression correlated with visual working memory capacity, indicating reliance on explicit control. In contrast, learned-suppression correlated with everyday distractibility, suggesting implicit control based on regularities. These results provide evidence for heterogeneous proactive control mechanisms underlying cued- and learned-suppression. While both engage inhibition, cued-suppression relies on deliberate top-down control modulated by working memory, whereas learned-suppression involves implicit suppression shaped by selection history and distractibility traits.


Attention , Cues , Inhibition, Psychological , Memory, Short-Term , Humans , Attention/physiology , Male , Female , Adult , Young Adult , Memory, Short-Term/physiology , Executive Function/physiology , Learning/physiology , Adolescent , Psychomotor Performance/physiology
11.
Conscious Cogn ; 121: 103696, 2024 May.
Article En | MEDLINE | ID: mdl-38703539

A serial reaction time task was used to test whether the representations of a probabilistic second-order sequence structure are (i) stored in an effector-dependent, effector-independent intrinsic or effector-independent visuospatial code and (ii) are inter-manually accessible. Participants were trained either with the dominant or non-dominant hand. Tests were performed with both hands in the practice sequence, a random sequence, and a mirror sequence. Learning did not differ significantly between left and right-hand practice, suggesting symmetric intermanual transfer from the dominant to the non-dominant hand and vice versa. In the posttest, RTs were shorter for the practice sequence than for the random sequence, and longest for the mirror sequence. Participants were unable to freely generate or recognize the practice sequence, indicating implicit knowledge of the probabilistic sequence structure. Because sequence-specific learning did not differ significantly between hands, we conclude that representations of the probabilistic sequence structure are stored in an effector-independent visuospatial code.


Reaction Time , Space Perception , Transfer, Psychology , Humans , Male , Female , Adult , Reaction Time/physiology , Young Adult , Space Perception/physiology , Transfer, Psychology/physiology , Psychomotor Performance/physiology , Visual Perception/physiology , Functional Laterality/physiology , Serial Learning/physiology , Practice, Psychological , Hand/physiology
12.
J Exp Psychol Hum Percept Perform ; 50(6): 535-553, 2024 Jun.
Article En | MEDLINE | ID: mdl-38573694

Learning-guided control refers to adjustments of cognitive control settings based on learned associations between predictive cues and the likelihood of conflict. In three preregistered experiments, we examined transfer of item-specific control settings beyond conditions under which they were learned. In Experiment 1, an item-specific proportion congruence (ISPC) manipulation was applied in a training phase in which target color in a Flanker task was biased (mostly congruent or mostly incongruent). In a subsequent transfer phase, participants performed a color-word Stroop task in which the same target colors were unbiased (50% congruent). The same design was implemented in Experiment 2, but training and transfer tasks were intermixed within blocks. Between-task transfer was evidenced in both experiments, suggesting learned control settings associated with the predictive cues were retrieved when encountering unbiased transfer items. In Experiment 3, we investigated a farther version of between-task transfer by using training (color-word Stroop) and transfer (picture-word Stroop) tasks that did not share the relevant (to-be-named) dimension or response sets. Despite the stronger, between-task boundary, we observed an ISPC effect for the transfer items, but it did not emerge until the second half of the experiment. The results provided converging evidence for the flexibility and automaticity of item-specific control. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Executive Function , Psychomotor Performance , Stroop Test , Transfer, Psychology , Humans , Transfer, Psychology/physiology , Adult , Young Adult , Executive Function/physiology , Male , Female , Psychomotor Performance/physiology , Adolescent , Color Perception/physiology
13.
J Exp Psychol Hum Percept Perform ; 50(6): 587-604, 2024 Jun.
Article En | MEDLINE | ID: mdl-38602798

The ability to exert cognitive control allows us to achieve goals in the face of distraction and competing actions. However, control is costly-people generally aim to minimize its demands. Because control takes many forms, it is important to understand whether such costs apply universally. Specifically, reactive control, which is recruited in response to stimulus or contextual features, is theorized to be deployed automatically, and not depend on attentional resources. Here, we investigated whether people avoided implementing reactive control in three experiments. In all, participants performed a Stroop task in which certain items were mostly incongruent (MI), that is, associated with a high likelihood of conflict (triggering a focused control setting). Other items were mostly congruent, that is, associated with a low likelihood of conflict (triggering a relaxed control setting). Experiment 1 demonstrated that these control settings transfer to a subsequent unbiased transfer phase. In Experiments 2-3, we used a demand selection task to investigate whether people would avoid choice options that yielded items that were previously MI. In all, participants continued to retrieve focused control settings for previously MI items, but they did not avoid them in the demand selection task. Critically, we only found demand avoidance when there was an objective difference in demand between options. These findings are consistent with the idea that implementing reactive control does not register as costly. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Executive Function , Stroop Test , Humans , Adult , Executive Function/physiology , Male , Young Adult , Female , Psychomotor Performance/physiology , Conflict, Psychological , Attention/physiology , Adolescent
14.
J Exp Psychol Hum Percept Perform ; 50(6): 636-653, 2024 Jun.
Article En | MEDLINE | ID: mdl-38619486

We examined whether proactive suppression can be applied on demand. A prompt cue indicated the to-be-ignored distractor color for each trial. Participants needed to use this cue to know which of two target shapes to respond to. To assess proactive suppression of the cued distractor color, we presented a probe letter recall task on a minority (25%) of the trials. A letter appeared inside each of the six shapes of the search array and participants recalled as many letters as they could. When the to-be-ignored color was fixed in Experiment 1, probe recall accuracy was lower for probe letters inside to-be-ignored-color distractors than target-color distractors, known as the probe suppression effect. However, when the prompted to-be-ignored color varied from trial to trial, the probe suppression effect disappeared, regardless of whether the prompt was a colored circle (Experiment 2) or a colored word (Experiment 3). Experiment 4 tested the search and destroy hypothesis by shortening the search display duration from 200 to 50 ms. No capture effect by the to-be-ignored color was evident, suggesting that participants did not first search for the to-be-ignored color, prior to suppressing it. We conclude that when rejection of a distractor color is required on demand, one cannot accomplish such suppression proactively but instead must deal with the distractor reactively, incurring a large cost in performance. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Attention , Color Perception , Mental Recall , Pattern Recognition, Visual , Humans , Young Adult , Adult , Female , Color Perception/physiology , Pattern Recognition, Visual/physiology , Mental Recall/physiology , Male , Attention/physiology , Cues , Proactive Inhibition , Psychomotor Performance/physiology
15.
J Exp Psychol Hum Percept Perform ; 50(6): 626-635, 2024 Jun.
Article En | MEDLINE | ID: mdl-38635224

Intentional binding refers to the subjective temporal compression between a voluntary action and its subsequent sensory outcome. Despite some studies challenging the link between temporal compression and intentional action, intentional binding is still widely used as an implicit measure for the sense of agency. The debate remains unsettled primarily because the experimental conditions used in previous studies were confounded with various alternative causes for temporal compression, and action intention has not yet been tested comprehensively against all potential alternative causes in a single study. Here, we solve this puzzle by jointly comparing participants' estimates of the interval between three types of triggering events with comparable predictability-voluntary movement, passive movement, and external sensory event-and an external sensory outcome (auditory or visual across experiments). The results failed to show intentional binding, that is, no shorter interval estimation for the voluntary than the passive movement conditions. Instead, we observed temporal (but not intentional) binding when comparing both movement conditions with the external sensory condition. Thus, temporal binding appears to originate from sensory integration and temporal prediction, not from action intention. As such, these findings underscore the need to reconsider the use of "intentional binding" as a reliable proxy of the sense of agency. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Intention , Psychomotor Performance , Time Perception , Humans , Adult , Young Adult , Male , Female , Time Perception/physiology , Psychomotor Performance/physiology , Auditory Perception/physiology , Visual Perception/physiology , Motor Activity/physiology
16.
Prog Neurobiol ; 236: 102611, 2024 May.
Article En | MEDLINE | ID: mdl-38604583

Classical studies suggest that the anterior intraparietal area (AIP) contributes to the encoding of specific information such as objects and actions of self and others, through a variety of neuronal classes, such as canonical, motor and mirror neurons. However, these studies typically focused on a single variable, leaving it unclear whether distinct sets of AIP neurons encode a single or multiple sources of information and how multimodal coding emerges. Here, we chronically recorded monkey AIP neurons in a variety of tasks and conditions classically employed in separate experiments. Most cells exhibited mixed selectivity for observed objects, executed actions, and observed actions, enhanced when this information came from the monkey's peripersonal working space. In contrast with the classical view, our findings indicate that multimodal coding emerges in AIP from partially-mixed selectivity of individual neurons for a variety of information relevant for planning actions directed to both physical objects and other subjects.


Macaca mulatta , Parietal Lobe , Psychomotor Performance , Visual Perception , Animals , Parietal Lobe/physiology , Psychomotor Performance/physiology , Visual Perception/physiology , Male , Neurons/physiology , Motor Activity/physiology
17.
Atten Percept Psychophys ; 86(4): 1400-1416, 2024 May.
Article En | MEDLINE | ID: mdl-38557941

Music training is associated with better beat processing in the auditory modality. However, it is unknown how rhythmic training that emphasizes visual rhythms, such as dance training, might affect beat processing, nor whether training effects in general are modality specific. Here we examined how music and dance training interacted with modality during audiovisual integration and synchronization to auditory and visual isochronous sequences. In two experiments, musicians, dancers, and controls completed an audiovisual integration task and an audiovisual target-distractor synchronization task using dynamic visual stimuli (a bouncing figure). The groups performed similarly on the audiovisual integration tasks (Experiments 1 and 2). However, in the finger-tapping synchronization task (Experiment 1), musicians were more influenced by auditory distractors when synchronizing to visual sequences, while dancers were more influenced by visual distractors when synchronizing to auditory sequences. When participants synchronized with whole-body movements instead of finger-tapping (Experiment 2), all groups were more influenced by the visual distractor than the auditory distractor. Taken together, this study highlights how training is associated with audiovisual processing, and how different types of visual rhythmic stimuli and different movements alter beat perception and production outcome measures. Implications for the modality appropriateness hypothesis are discussed.


Attention , Dancing , Music , Psychomotor Performance , Humans , Dancing/psychology , Female , Male , Young Adult , Attention/physiology , Psychomotor Performance/physiology , Adult , Auditory Perception/physiology , Time Perception , Practice, Psychological , Pattern Recognition, Visual/physiology , Adolescent , Visual Perception/physiology , Reaction Time
18.
Nat Commun ; 15(1): 3357, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637493

Egocentric encoding is a well-known property of brain areas along the dorsal pathway. Different to previous experiments, which typically only demanded egocentric spatial processing during movement preparation, we designed a task where two male rhesus monkeys memorized an on-the-object target position and then planned a reach to this position after the object re-occurred at variable location with potentially different size. We found allocentric (in addition to egocentric) encoding in the dorsal stream reach planning areas, parietal reach region and dorsal premotor cortex, which is invariant with respect to the position, and, remarkably, also the size of the object. The dynamic adjustment from predominantly allocentric encoding during visual memory to predominantly egocentric during reach planning in the same brain areas and often the same neurons, suggests that the prevailing frame of reference is less a question of brain area or processing stream, but more of the cognitive demands.


Cerebral Cortex , Space Perception , Male , Animals , Space Perception/physiology , Cerebral Cortex/physiology , Parietal Lobe/physiology , Memory , Cognition , Psychomotor Performance/physiology
19.
J Neural Eng ; 21(3)2024 May 03.
Article En | MEDLINE | ID: mdl-38653251

Objective.The functional asymmetry between the two brain hemispheres in language and spatial processing is well documented. However, a description of difference in control between the two hemispheres in motor function is not well established. Our primary objective in this study was to examine the distribution of control in the motor hierarchy and its variation across hemispheres.Approach.We developed a computation model termed the bilateral control network and implemented the same in a neural network framework to be used to replicate certain experimental results. The network consists of a simple arm model capable of making movements in 2D space and a motor hierarchy with separate elements coding target location, estimated position of arm, direction, and distance to be moved by the arm, and the motor command sent to the arm. The main assumption made here is the division of direction and distance coding between the two hemispheres with distance coded in the non-dominant and direction coded in the dominant hemisphere.Main results.With this assumption, the network was able to show main results observed in visuomotor adaptation studies. Importantly it showed decrease in error exhibited by the untrained arm while the other arm underwent training compared to the corresponding naïve arm's performance-transfer of motor learning from trained to the untrained arm. It also showed how this varied depending on the performance variable used-with distance as the measure, the non-dominant arm showed transfer and with direction, dominant arm showed transfer.Significance.Our results indicate the possibility of shared control between the two hemispheres. If indeed found true, this result could have major significance in motor rehabilitation as treatment strategies will need to be designed in order to account for this and can no longer be confined to the arm contralateral to the affected hemisphere.


Adaptation, Physiological , Functional Laterality , Psychomotor Performance , Adaptation, Physiological/physiology , Humans , Functional Laterality/physiology , Psychomotor Performance/physiology , Rotation , Neural Networks, Computer , Models, Neurological , Nerve Net/physiology , Movement/physiology , Arm/physiology
20.
J Neuroeng Rehabil ; 21(1): 60, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654367

OBJECTIVE: The objective of this study was to evaluate users' driving performances with a Power Wheelchair (PWC) driving simulator in comparison to the same driving task in real conditions with a standard power wheelchair. METHODS: Three driving circuits of progressive difficulty levels (C1, C2, C3) that were elaborated to assess the driving performances with PWC in indoor situations, were used in this study. These circuits have been modeled in a 3D Virtual Environment to replicate the three driving task scenarios in Virtual Reality (VR). Users were asked to complete the three circuits with respect to two testing conditions during three successive sessions, i.e. in VR and on a real circuit (R). During each session, users completed the two conditions. Driving performances were evaluated using the number of collisions and time to complete the circuit. In addition, driving ability by Wheelchair Skill Test (WST) and mental load were assessed in both conditions. Cybersickness, user satisfaction and sense of presence were measured in VR. The conditions R and VR were randomized. RESULTS: Thirty-one participants with neurological disorders and expert wheelchair drivers were included in the study. The driving performances between VR and R conditions were statistically different for the C3 circuit but were not statistically different for the two easiest circuits C1 and C2. The results of the WST was not statistically different in C1, C2 and C3. The mental load was higher in VR than in R condition. The general sense of presence was reported as acceptable (mean value of 4.6 out of 6) for all the participants, and the cybersickness was reported as acceptable (SSQ mean value of 4.25 on the three circuits in VR condition). CONCLUSION: Driving performances were statistically different in the most complicated circuit C3 with an increased number of collisions in VR, but were not statistically different for the two easiest circuits C1 and C2 in R and VR conditions. In addition, there were no significant adverse effects such as cybersickness. The results show the value of the simulator for driving training applications. Still, the mental load was higher in VR than in R condition, thus mitigating the potential for use with people with cognitive disorders. Further studies should be conducted to assess the quality of skill transfer for novice drivers from the simulator to the real world. Trial registration Ethical approval n ∘ 2019-A001306-51 from Comité de Protection des Personnes Sud Mediterranée IV. Trial registered the 19/11/2019 on ClinicalTrials.gov in ID: NCT04171973.


Wheelchairs , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Automobile Driving/psychology , Computer Simulation , Nervous System Diseases/psychology , Pilot Projects , Psychomotor Performance/physiology , User-Computer Interface , Virtual Reality
...